Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

НЕЗАВИСИМЫЕ ИЗМЕРИМЫЕ РАЗБИЕНИЯ

Значение НЕЗАВИСИМЫЕ ИЗМЕРИМЫЕ РАЗБИЕНИЯ в математической энциклопедии:

пространства с нормированной мерой - такие два измеримых разбиения и , что если и - булевы -алгебры измеримых множеств, целиком состоящие из элементов разбиений и соответственно, то элементы одной из них независимы от элементов другой в том смысле, как это понимается в теории вероятностей: при . Если при этом измеримое разбиение, являющееся подразбиением обоих разбиений и , совпадает по mod 0 с разбиением на отдельные точки, то и наз. независимыми дополнениями друг друга. Известны условия того, чтобы измеримое разбиение Лебега пространства имело независимое дополнение.

Лит.:[l] Рохлин В. А., "Матем. сб.", 1949, т. 25, № 1, с. 107-50; [2] Ершов М. П., "Успехи матем. наук", 1977, т. 32, в. 1, с. 187-88.

Д. В. Аносов.