"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
МОРЕРЫ ТЕОРЕМАЗначение МОРЕРЫ ТЕОРЕМА в математической энциклопедии: если (однозначная) функция комплексного переменного z в области Dнепрерывна и интеграл от нее по любому замкнутому спрямляемому контуру равен нулю, т. е. то f(z) - аналитич. ция в D. Эта теорема была получена Дж. Морерой [1]. Условие сформулированной М. т. можно ослабить, ограничившись требованием, чтобы обращались в нуль интегралы (*), взятые по границе любого треугольника , компактно принадлежащего области D, т. е. такого, что . М. т. представляет собой (неполное) обращение Коши интегральной теоремы и является одной из основных теорем, теории аналитич. ций. М. т. обобщается на случай функций многих комплексных переменных. Пусть функция комплексных переменных непрерывна в области Dкомплексного пространства и такова, что обращается в нуль интеграл от нее, взятый по границе любой компактно принадлежащей Dпризма-тич, области вида где - прямолинейные отрезки в плоскостях с концами - треугольник в плоскости . Тогда - голоморфная функция в D. Лит.:[1] Morera G., "Rend. Ist. Lomb.", 1886, t. 19, p. 304-308; [2] Mapкушевич А. И., Теория аналитических функций, 2 изд., т. 1, М., 1967; [3] Шабат Б .В., Введение в комплексный анализ, 2 изд., ч. 1-2, М., 1976; [4] Владимиров В. С, Методы теории функций многих комплексных переменных, М., 1964. Е. Д. Соломенцев. |
|
|