"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
МОНТЕЛЯ ПРОСТРАНСТВОЗначение МОНТЕЛЯ ПРОСТРАНСТВО в математической энциклопедии: - бочечное пространство (в частности, Фреше пространство), в к-ром каждое замкнутое ограниченное множество компактно. Пространство всех голоморфных функций в области Gс топологией равномерной сходимости на компактах является пространством Фреше и в силу Монтеля теоремы2 всякая ограниченная последовательность голоморфных функций компактна в , так что - М. п. Пространство всех бесконечно дифференцируемых в области функций, пространство финитных функций, пространство быстро убывающих бесконечно дифференцируемых функций - также М. п. в естественных топологиях. М. п. рефлексивно. Сильно сопряженное пространство к М. п. является М. п., в частности пространства обобщенных функций - М. п. Нормированное пространство является М. п. в том и только в том случае, когда оно конечномерно. Лит.:[1] Бурбаки Н., Топологические векторные пространства, пер. с франц., М., 1959; [2] Робертсон А.-П., Робертсон В.-Дж., Топологические векторные пространства, пер. с англ., М., 1967; [3]Эдвардс Р.-Э., Функциональный анализ. Теория и приложения, пер. с англ., М., 1969. С. Г. Ирейн. |
|
|