"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
МОНОМОРФИЗМЗначение МОНОМОРФИЗМ в математической энциклопедии: в категории - морфизм категории , для к-рого из всякого равенства следует, что (другими словами, на можно сокращать справа). Другое эквивалентное определение М.: для любого объекта Xкатегории индуцируемое морфизмом m отображение множеств должно быть инъективным. Произведение двух М. является М. Каждый левый делитель М. есть М. Класс всех объектов и класс всех М. произвольной категории составляют подкатегорию категории (обозначаемую обычно ). В категории множеств роль М. играют инъекции. Двойственным к понятию М. является понятие эпиморфизма. Лит.:[1] Цаленко М. Ш., Шульгейфер Е. Г., Основы теории категорий, М., 1974; [2] Букур И., Деляну А., Введение в теорию категорий и функторов, пер. с англ., М., 1972. О. А. Иванова. |
|
|