"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
МОДУЛЯРНЫЙ ИДЕАЛЗначение МОДУЛЯРНЫЙ ИДЕАЛ в математической энциклопедии: - правый (левый) идеал J кольца R, обладающий следующим свойством: в кольце R найдется хотя бы один такой элемент е, что для всех хиз R разность х- ех принадлежит J (соответственно ). Элемент еназ. левой (правой) единицей по модулю идеала J. В кольце с единицей всякий идеал является модулярным. Всякий собственный модулярный правый (левый) идеал можно вложить в максимальный правый (левый) идеал, к-рый автоматически будет модулярным. Пересечение всех максимальных модулярных правых идеалов ассоциативного кольца совпадает с пересечением всех максимальных левых идеалов модулярных и является Джекобсона радикалом этого кольца. М. и. иногда наз. также регулярными идеалами. Лит.:[1] Джекобсон Н., Строение колец, пер. с англ., М., 1961. К. А. Жевлаков. |
|
|