"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
МОДУЛЬ АВТОМОРФИЗМАЗначение МОДУЛЬ АВТОМОРФИЗМА в математической энциклопедии: - действительное положительное число, ставящееся в соответствие автоморфизму локально компактной группы. Если G- такая группа и - нек-рый автоморфизм группы Gкак топологич. группы, то модуль автоморфизма определяется формулой где - левоинвариантная мера Хаара на группе Gи - любое компактное подмножество группы Gположительной меры (причем не зависит от S). Если G компактна или дискретна, то всегда = , т. к. для компактной группы можно положить , а для дискретной , где - любой элемент G. Если и - два автоморфизма группы G, то Если Г - нек-рая топологич. группа, к-рая непрерывно действует на группу Gавтоморфизмами, то определяет непрерывный гомоморфизм где - мультипликативная группа действительных положительных чисел. В частности, сопоставляя каждому элементу порождаемый им внутренний автоморфизм группы G и рассматривая модуль этого автоморфизма, получают непрерывный гомоморфизм Gв группу . Этот гомоморфизм тривиален тогда и только тогда, когда левоинвариантная мера Хаара на группе Gявляется одновременно и правоинвариантной. Группы, удовлетворяющие последнему условию, наз. унимодулярными. Другой пример - локально компактное тело К, каждый ненулевой элемент к-рого определяет автоморфизм умножения на аддитивной группы тела К. Функция используется при изучении структуры локально компактных тел. Лит.:[1] Бурбаки Н., Интегрирование. Векторное интегрирование. Мера Хаара. Свертка и представления, пер. с франц., М., 1970; [2] Вейль А., Интегрирование в топологических группах и его применения, пер. с франц., М., 1950; [3] его же, Основы теории чисел, пер. с англ., М., 1972. Л. В. Кузьмин. |
|
|