"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
МИНКОВСКОГО ПРОБЛЕМАЗначение МИНКОВСКОГО ПРОБЛЕМА в математической энциклопедии: существует ли замкнутая выпуклая гиперповерхность F, у к-рой гауссова кривизна является заданной функцией единичного вектора внешней нормали . Поставлена Г. Минковским [1], к-рому принадлежит обобщенное решение проблемы в том смысле, что оно не содержит никакой информации о характере регулярности F, даже если - аналитич. функция. Он доказал, что если заданная на единичной гиперсфере S непрерывная положительная функция удовлетворяет условию то существует и притом единственная (с точностью до параллельного переноса) замкнутая выпуклая поверхность F, для к-рой является гауссовой кривизной в точке с внешней нормалью . Регулярное решение М. п. дано А. В. Погореловым в 1971 (см. [2]), им же рассмотрены нек-рые вопросы геометрии и теории дифференциальных уравнений, примыкающие к этой проблеме. Именно он доказал, что если принадлежит классу то получаемая поверхность Fпринадлежит классу а в случае аналитичности поверхность Fтакже оказывается аналитической. Естественное обобщение М. п. состоит в решении вопроса о существовании выпуклой гиперповерхности с заданной элементарной симметрич. функцией главных кривизн любого данного порядка В частности, при это - проблема Кристоффеля о восстановлении поверхности по средней кривизне. Необходимое условие разрешимости этой обобщенной М. п. аналогично (*) имеет вид Однако это условие недостаточно (А. Д. Александров, 1938, см. [3]). Вот примеры достаточных условий: При этом регулярность Fта же, что и в М. п. Эти результаты с помощью аппроксимаций оказываются справедливыми и для функций , обладающих свойствами неотрицательности, симметрии и вогнутости. Лит.:[1] Мinkоwsкi H., "Math. Ann.", 1903, Bd 57, S. 447-95; [2] Погорелов А. В., Многомерная проблема Минковского, М., 1971; [3] Буземан Г., Выпуклые поверхности, пер. с англ., М., 1964. М. И. Войцеховгкий. |
|
|