Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

МЕНЬШОВА - РАДЕМАХЕРА ТЕОРЕМА

Значение МЕНЬШОВА - РАДЕМАХЕРА ТЕОРЕМА в математической энциклопедии:

- теорема о сходимости ортогональных рядов почти всюду: если система функций ортонормирована на

отрезке , то при условии

ряд

сходится почти всюду на [а, b]. Эта теорема доказана независимо Д. Е. Меньшовым [1] и X. Радомахером [2]. Д. Е. Меньшов доказал, что ее утверждение окончательно в следующем смысле. Если монотонно возрастающая последовательность положительных чисел удовлетворяет условию то найдется всюду расходящийся ортогональный ряд (*), коэффициенты к-рого удовлетворяют условию

Лит.:[1] Menchoif D., "Fundam. math.", 1923, t. 4, p. 82-105; [2] Rademacher H., "Math. Ann.", 1922, Bd 87, S. 112-38; [3] Алексич Г., Проблемы сходимости ортогональных рядов, пер. с англ., М., 1963, с. 87, 94.

Б. И. Голубов.