"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
МАРКОВА ЦЕПИ ПОЛОЖИТЕЛЬНЫЙ КЛАСС СОСТОЯНИЙЗначение МАРКОВА ЦЕПИ ПОЛОЖИТЕЛЬНЫЙ КЛАСС СОСТОЯНИЙ в математической энциклопедии: - такое множество Ксостояний однородной цепи Маркова x(t) с множеством состояний S, что для переходных вероятностей цепи x(t) выполняются условия: pil(t) =0при любых где tii - время возвращения в состояние i: для цепей Маркова с дискретным временем и для цепей Маркова с непрерывным временем. В случае класс Кназ. нулевым классом состояний. Состояния, принадлежащие одному и тому же положительному классу К, обладают рядом общих свойств. Напр., в случае дискретного времени при любых i, существует если Цепь Маркова с дискретным временем, все состояния к-рой образуют один положительный класс периода 1, является примером Маркова цепи эргодической. Лит.:[1] Ч ж у н К а й - л а й, Однородные цепи Маркова, пер. с англ., М., 1964; [2] Д у б Д ж., Вероятностные процессы, пер. с англ., М., 1956. А. М. Зубков. |
|
|