"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
МАРГИНАЛЬНОЕ РАСПРЕДЕЛЕНИЕЗначение МАРГИНАЛЬНОЕ РАСПРЕДЕЛЕНИЕ в математической энциклопедии: частное распределение,- распределение случайной величины или множества случайных величин, рассматриваемых в качестве компоненты или множества компонент нек-рого случайного вектора (см. Многомерное распределение) с заданным распределением. Иначе, М. р. является проекцией распределения случайного вектора Х=( Х 1, . . ., Х п).на любую ось х 1 или подпространство, определяемое переменными и полностью определяется по распределению этого вектора. Напр., если F( х 1, х 2) - функция распределения Х=(X1, X2) в то функция распределения X1 равна если двумерное распределение абсолютно непрерывно и р( х 1, х 2).- его плотность, то плотность М. р. Х 1 равна Аналогично вычисляется М. р. для любой компоненты или множества компонент вектора Х=( Х 1, ..., Х п).при любом п. Если распределение Xнормально, то все М. р. также нормальны. В том случае, когда величины Х 1, ..., Х п взаимно независимы, по М. р. компонент Х 1, ..., Х п вектора Xоднозначно определяется его распределение: Аналогично определяется М. р. по отношению к распределению вероятностей, заданному на произведении пространств, более общих, чем числовая прямая. Лит.:[1] Лоэв М., Теория вероятностей, пер. с англ., №., 1962; [2] К р а м е р Г., Математические методы статистики, пер. с англ., [2 изд.], М., 1975. А. В. Прохоров. |
|
|