Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

МАЛЬЦЕВА АЛГЕБРА

Значение МАЛЬЦЕВА АЛГЕБРА в математической энциклопедии:

м у ф а н г л и е в а алгебра,- линейная алгебра над полем, удовлетворяющая тождествам

где - якобиан элементов х, у, z.M. а. представляют собой естественное обобщение алгебр Ли. Любая М. а. является бинарно лиевой алгеброй.

М. а. были введены А. И. Мальцевым [1] и названы им муфанг-лиевыми алгебрами ввиду их связи с аналитич. лупами Муфанг. Касательная алгебра локальной аналитич. лупы Муфанг является М. а. Верно также и обратное: любая конечномерная М. а. над полным нормированным полем характеристики 0 является касательной алгеброй нек-рой локальной аналитич. лупы Муфанг.

Имеется тесная связь между М. а. и альтернативными алгебрами (см. Альтернативные кольца и алгебры). Коммутаторная алгебра произвольной альтернативной алгебры, т. е. алгебра, получаемая заменой основного умножения на операцию коммутирования

является М. а.

Всякая простая М. а. характеристики либо лиева, либо есть 7-мерная алгебра над своим центроидом. Всякая первичная М. а. (при ) либо лиева, либо вкладывается в качестве подкольца в подходящую 7-мерную простую алгебру над нек-рым полем. Произвольная полупервичная М. а. (при ) изоморфно вкладывается в качестве подалгебры в коммутаторную алгебру нек-рой альтернативной алгебры. Вопрос о вложении произвольной М. а. в коммутаторную алгебру альтернативой алгебры открыт (1982).

Пусть Z(А) - лиев центр М. а. А:

Для любого идеала I произвольной полупервичной М. а. А(при )

Свойства алгебраич. М. а. аналогичны свойствам алгебраич. алгебр Ли. В произвольной алгебраич. М. а. (при ) существует локально конечный радикал, т. е. максимальный локально конечный идеал, факторалгебра по к-рому не содержит локально конечных идеалов. М. а. характеристики или р=0, удовлетворяющие n-му условию Энгеля (см. Энгелева алгебра), локально нильпотентны. Различие между М. а. и алгебрами Ли проявляется при переходе от локальной нильпотентности к глобальной. Имеется пример М. а. (р=0), удовлетворяющей 3-му условию Энгеля, разрешимой индекса 2, но не нильпотентной.

Для М. а. имеется аналог теоремы Энгеля, играющей большую роль в структурной теории алгебр Ли: М. а., удовлетворяющая условию Энгеля и условию максимальности для подалгебр, нильпотентна. Этот результат справедлив даже в более общем случае - для бинарно лиевых алгебр.

Во всякой свободной М. а. (при ) имеется ненулевой лиев центр. Свободная М. а. (при ) с тремя и более образующими не является первичной алгеброй. Свободная М. а. (при р=0) с девятью и более образующими содержит тривиальные идеалы.

Если Rn - многообразие М. а., порожденное свободной М. а. от побразующих и р=0, то цепочка многообразий

не стабилизируется ни на каком конечном шаге.

Значительно развита теория конечномерных М. а. и их представлений. Основные результаты этой теории аналогичны результатам теории алгебр Ли. Имеются аналоги классич. теорем Ли: если r - расщепляемое представление разрешимой М. а. характеристики 0, то все матрицы r(х).могут быть приведены одновременно к треугольному виду; если r - расщепляемое представление нильпотентной М. а. в пространстве V, то V разлагается в прямую сумму весовых подпространств Va, и все матрицы ограничений операторов r(х).на Va. могут быть приведены одновременно к треугольному виду с числом a(x) на главной диагонали.

Следующие результаты аналогичны критериям Кар-тана разрешимости и полупростоты алгебр Ли: если r - точное представление М. а. ( р=0).и билинейная форма на А, ассоциированная с представлением r, тривиальна, то алгебра Аразрешима; если r - представление полупростой М. а., то форма следа, ассоциированная с r, невырождена. Если киллингова форма алгебры Аневырождена, то Аполупроста.

Любое представление полупростой М. а. с р=0вполне приводимо. Если S - радикал (максимальный разрешимый идеал) М. а. А, N - нильрадикал (максимальный нильпотентный идеал), то для любого дифференцирования Dалгебры А

Произвольная конечномерная М. а. Ахарактеристики 0 есть прямая сумма (как линейных пространств) своего радикала Sи полупростой подалгебры В, изоморфной факторалгебре алгебры Апо радикалу S, и любые для полупростых фактора сопряжены внутренним автоморфизмом (аналог теоремы Леви - Мальцева - Хариш-Чандра, известной для алгебр Ли).

Лит.: [1] М а л ь ц е в А. И., "Матем. сб.", 1955, т. 36, № 3, с. 569-76; [2] S a g l е A. A., "Trails. Amer. Math. Soc.", 1961, v. 101, X" 3, p. 426-58; [3] К у з ь м и н Е. Н., "Алгебра и логика", 1968, т. 7, № 2, с. 42-47; [4] е г о же, там же, № 4, с. 48-69; [5] е г о же, там же, 1971, т. 10, № 1, с. 3-22; [6] его же, там же, 1977, т. 16, № 4, с. 424-31; [7] Филиппов В. Т.. там же, 1976, т. 15, № 1, с. 89-109; [8] е г о же, там же, 1977, т. 16, № 1, с. 101-108; [9] Г р и ш к о в А. Н., там же, № 4, с. 389-96; [10] Шестаков И. П., там же, № 2, с. 227 - 46. В. Т. Филиппов.