"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
МАКДОНАЛЬДА ФУНКЦИЯЗначение МАКДОНАЛЬДА ФУНКЦИЯ в математической энциклопедии: модифицированная цилиндрическая функция, бесселева функция мнимого аргумента, - функция где v - произвольное нецелое действительное число, М. ф. К v(z) является решением дифференциального уравнения стремящимся экспоненциально к нулю, когда принимая положительные значения. Функции Iv(z) и К v(z) образуют фундаментальную систему решений уравнения (*). При функция К v(z) имеет корни лишь в случае Re(z)<0. Если то число всех корней в этих двух квадрантах равно ближайшему к четному числу, если только не является целым; в последнем случае число всех корней равно При корней нет, если только не целое. Ряды и асимптотич. представления: n - целое неотрицательное; z велико и Рекуррентные формулы: Лит.:[1] М а с d о h а l d Н. М., "Proc. London Math. Soc.", 1899, v. 30, p. 165-79; [2] В а т с о н Г. Н., Теория бесселевых Функций, пер. с англ., ч. 1, М., 1949. В. И. Пагурова. |
|
|