"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЛЮКСЕМБУРГА НОРМАЗначение ЛЮКСЕМБУРГА НОРМА в математической энциклопедии: функция где М(и) - четная выпуклая функция, возрастающая при положительных U, М(u)>0 при u>0, G - ограниченное замкнутое множество в Свойства этой нормы были изучены В. Люксембургом [1]. Л. н. эквивалентна норме Ор-лича (см. Орлича пространство).и Если функции М(и).и N(и).дополнительны друг к другу (см. Орлича класс), то Если - характеристич. функция измеримого подмножества то Лит.:[1] LuxemburgW., Banaeh function spaces, [s. 1.], 1955; [2] Красносельский М. А., Р у т и ц к и й Я. Б., Выпуклые функции и пространства Орлича, М., 1958. Е. М. Семенов. |
|
|