"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЛЬЕНАРА - ШИПАРА КРИТЕРИИЗначение ЛЬЕНАРА - ШИПАРА КРИТЕРИИ в математической энциклопедии: модификация Рауса - Гурвица критерия, сводящая все вычисления в нем к вычислению главных миноров только четного (или только нечетного) порядка матрицы Гурвица. Пусть дан многочлен II - его матрица Гурвица и - ее главные миноры порядка Г, г=1, 2, . . ., п. Критерий Льенара - Шипара: любое из следующих четырех условий является необходимым и достаточным для того, чтобы все корни многочлена * с действительными коэффициентами имели отрицательные действительные части: Критерий установлен А. Льенаром и А. Шипаром [1]. Лит.:[1] L i e n a r d А., С h i р а r t Н., "J. math, pures et appl.", 1914, t. 10, p. 291-346; [2] Гантмахер Ф. Р., Теория матриц, 3 изд., М., 1967. И. В. Проскуряков. |
|
|