"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЛЕРЕ ФОРМУЛАЗначение ЛЕРЕ ФОРМУЛА в математической энциклопедии: Кош и - Фантапье формула,- формула интегрального представления голоморфных функций f(z) многих комплексных переменных обобщающая интегральную формулу Коши (см. Коши интеграл). Пусть D- конечная область комплексного пространства с кусочно гладкой границей дD; - любая гладкая вектор-функция от со значениями в такая, что скалярное произведение всюду на дD для всех . Тогда любая голоморфная в Dфункция f(z), непрерывная в замкнутой области представима в виде Формула (*) обобщает классическую интегральную формулу Коши для аналитич. функций одного комплексного переменного и наз. формулой Лере. Ж. Лере (J. Leray), получивший эту формулу (см. [1]), назвал ее формулой Коши - Фантапье. В этой фор- муле дифференциальные формы и составляются по законам: где - знак внешнего умножения (см. Внешнее произведение). Выбирая вид функции из формулы (*) можно получить различные интегральные представления. При этом следует иметь в виду, что, вообще говоря, интеграл Лере в формуле (*) не равен тождественно нулю, когда z находится вне D. См. также Бохнера - Мартинелли представление. Лит.:[1] Лере Ж., Дифференциальное и интегральное исчисление на комплексном аналитическом многообразии, пер. с франц., М., 1961; [2] Ш а б а т Б. В., Введение в комплексный анализ, 2 изд., ч. 2, М., 1976. Е. Д. Соломенцев. |
|
|