Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ЛЕБЕГА КОНСТАНТЫ

Значение ЛЕБЕГА КОНСТАНТЫ в математической энциклопедии:

1) Величины

где

есть Дирихле ядро. Л. к. Ln при каждом пявляется:

1) максимальным значением для всех хи функций f(t) таких, что при почти всех t;

2) точной верхней гранью для всех хи всех непрерывных функций f(t).таких, что

3) точной верхней гранью интегралов

для всех функций /(<) таких, что

Здесь Sn(f, х).есть частная сумма ряда Фурье по тригонометрич. системе -периодической функции f(t). Справедлива асимптотич. формула:

В частности, при что связано с расходимостью тригонометрич. рядов Фурье нек-рых непрерывных функций. В более широком смысле Л. к. определяются для других ортонормированных систем как величины

где Dn(x, t).есть ядро Дирихле для данной ортонорми-рованной на ( а, b).системы функций, и играют важную роль в вопросах сходимости рядов Фурье по этим системам. Л. к. введены А. Лебегом (Н. Lebesgue, 1909). См. также Лебега функции.

Лит.:[1] Зигмунд А., Тригонометрические ряды, пер. с англ., т. 1, М., 1965. К. И. Осколков.

2) Л. к. интерполяционного процесса - числа

х 0, x1,. . ., х п - попарно различные узлы интерполяции, лежащие на нек-ром отрезке [а, 6].

Пусть - соответственно пространства непрерывных на отрезке [ а, b]функций и многочленов степени не выше чем п, рассматриваемых на том же отрезке, с равномерной метрикой, и пусть - интерполяционный многочлен степени n, принимающий в узлах те же значения, что и функция f. Если через Р п обозначить оператор, ставящий в соответствие функции f(x).многочлен

то где слева стоит

норма оператора в пространстве линейных ограниченных операторов ) и

где En(f) - наилучшее приближение функции f алгебраич. многочленами степени

При любом выборе на отрезке [а, b] узлов интерполяции Для равноотстоящих узлов существует такая постоянная с>0, что Для узлов, совпадающих с нулями многочлена Чебышева,

Л. к. имеют минимальный порядок возрастания, именно:

Если функция f m раз дифференцируема на отрезке - заданный набор чисел ("приближений значений "), . - интерполяционный многочлен степени п, принимающий в узлах х k, k=0, 1, . . ., п, значения yk,

Л. к. произвольного отрезка[ а, b]связаны с аналогичными константами для отрезка [-1, 1] соотношением

в частности Л. Д. Кудрявцев.