"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЛЕБЕГА КОНСТАНТЫЗначение ЛЕБЕГА КОНСТАНТЫ в математической энциклопедии: 1) Величины где есть Дирихле ядро. Л. к. Ln при каждом пявляется: 1) максимальным значением для всех хи функций f(t) таких, что при почти всех t; 2) точной верхней гранью для всех хи всех непрерывных функций f(t).таких, что 3) точной верхней гранью интегралов для всех функций /(<) таких, что Здесь Sn(f, х).есть частная сумма ряда Фурье по тригонометрич. системе -периодической функции f(t). Справедлива асимптотич. формула: В частности, при что связано с расходимостью тригонометрич. рядов Фурье нек-рых непрерывных функций. В более широком смысле Л. к. определяются для других ортонормированных систем как величины где Dn(x, t).есть ядро Дирихле для данной ортонорми-рованной на ( а, b).системы функций, и играют важную роль в вопросах сходимости рядов Фурье по этим системам. Л. к. введены А. Лебегом (Н. Lebesgue, 1909). См. также Лебега функции. Лит.:[1] Зигмунд А., Тригонометрические ряды, пер. с англ., т. 1, М., 1965. К. И. Осколков. 2) Л. к. интерполяционного процесса - числа х 0, x1,. . ., х п - попарно различные узлы интерполяции, лежащие на нек-ром отрезке [а, 6]. Пусть - соответственно пространства непрерывных на отрезке [ а, b]функций и многочленов степени не выше чем п, рассматриваемых на том же отрезке, с равномерной метрикой, и пусть - интерполяционный многочлен степени n, принимающий в узлах те же значения, что и функция f. Если через Р п обозначить оператор, ставящий в соответствие функции f(x).многочлен то где слева стоит норма оператора в пространстве линейных ограниченных операторов ) и где En(f) - наилучшее приближение функции f алгебраич. многочленами степени При любом выборе на отрезке [а, b] узлов интерполяции Для равноотстоящих узлов существует такая постоянная с>0, что Для узлов, совпадающих с нулями многочлена Чебышева, Л. к. имеют минимальный порядок возрастания, именно: Если функция f m раз дифференцируема на отрезке - заданный набор чисел ("приближений значений "), . - интерполяционный многочлен степени п, принимающий в узлах х k, k=0, 1, . . ., п, значения yk, Л. к. произвольного отрезка[ а, b]связаны с аналогичными константами для отрезка [-1, 1] соотношением в частности Л. Д. Кудрявцев. |
|
|