"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЛАМБЕРТА РЯДЗначение ЛАМБЕРТА РЯД в математической энциклопедии: - функциональный ряд Рассмотрен И. Ламбертом (см. [1]) в связи с вопросами сходимости степенных рядов. Если сходится ряд то Л. р. сходится при всех значениях х, кроме х=+1; в противном случае он сходится для тех значений х, для к-рых сходится ряд Л. р. применяется в нек-рых задачах теории чисел. Так, при |x|<1 сумма j(x) ряда (1) представляется в виде степенного ряда: где а суммирование распространяется на делители kчисла п. В частности, если - число делителей и, если - сумма делителей п. Поведение j(x). (с надлежащими а п).при используется, напр. (см. [3]), в задаче Харди и Рамануджана для получения асимптотич. формулы для количества "неограниченных разбиений" натурального числа. Лит.:[1] Lambert J. H., Opera mathematica, v. 1-2, Zurich, 1946-48; [2] Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 4 изд., т. 2, М., 1959; [3] Постников А. Г., Введение ваналитическую теорию чисел, М., 1971. М. И. Войцеховский. |
|
|