"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
КОЯДРОЗначение КОЯДРО в математической энциклопедии: морфизма категории - понятие, двойственное понятию ядра морфизма. В категориях векторных пространств, групп, колец и т. п. оно описывает наибольший факторобъект объекта В, аннулирующий образ гомоморфизма Пусть - категория с нулевыми морфизмами. Морфизм наз. коядром морфизма если и всякий морфизм для к-рого однозначно представим в виде К. морфизма обозначается Если для единственного изоморфизма Обратно, если - изоморфизм, то есть К. морфизма а. Таким образом, все К. морфизма а образуют факторобъект объекта В, к-рый обозначается Если то v - нормальный эпиморфизм. Обратное, вообще говоря, неверно. К. нулевого морфизма равно К. единичного морфизма 1A существует тогда и только тогда, когда в имеется нулевой объект. В категории с нулевым объектом морфизм обладает К. в том и только в том случае, когда в существует коуниверсальный квадрат относительно морфизмов Это условие выполнено, в частности, для любого морфизма локально малой справа категории с нулевым объектом и произведениями. М. Ш. Цаленко. |
|
|