"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
КОН-ФОССЕНА ПРЕОБРАЗОВАНИЕЗначение КОН-ФОССЕНА ПРЕОБРАЗОВАНИЕ в математической энциклопедии: - соответствие между парой изометричных поверхностей F1 и F2 и бесконечно малым изгибанием Zтак наз. срединной поверхности F ср.: если х 1 и х 2- радиус-вектора поверхностен F1 и F2, то радиус-вектор x ср поверхности F ср. равен а поле скоростей z бесконечно малого изгибания Zравно введено С. Э. Кон-Фоссеном [1]. Если F1 и F2- гладкие поверхности и если углы между полукасательными t1 и t2 к соответствующим по изометрии кривым поверхностей F1 и F2 меньше я, то Fcp оказывается гладкой. Этот факт позволяет в ряде случаев сводить исследование изометрии F1 и F2 к изучению бесконечно малых изгибаний Fcp. Для фиксированной точки М 1 на F1 (и соответственно М 2 на F2 )К.-Ф. п. определяет преобразование Кэли ортогональной матрицы О, преобразующей касательный пучок на F, в изометричный ему пучок на F2, в кососнмметрическую матрицу K, описывающую бесконечно малое изгибание Fcp. Так как Ополностью определяется вектором искаляром р=, где- орт оси поворота соответствующих пучков, X- угол поворота (см. Поворотов диаграмма), а К- вектором вращения у, то К.-Ф. п. можно выразить формулой: у= V/p. К.-Ф. п. обобщается на случай пространств постоянной кривизны [2]. Лит.:[1] Кон-Фоссен С. Э., Некоторые вопросы дифференциальной геометрии в целом, М., 1959; [2] Погорелов А. В., Внешняя геометрия выпуклых поверхностей, М., 1969. М. И. Войцеховский. |
|
|