"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
КОГЕРЕНТНОЕ КОЛЬЦОЗначение КОГЕРЕНТНОЕ КОЛЬЦО в математической энциклопедии: - кольцо, в к-ром каждый конечно порожденный левый идеал является конечно представимым, т. е. фактормодулем конечно порожденного свободного модуля по конечно порожденному свободному подмодулю. Такое К. к. наз. когерентным слева кольцом, аналогично, но с помощью правых идеалов, может быть определено когерентное справа кольцо. Когерентное слева кольцо Дможет быть определено также любым из следующих двух эквивалентных условий: 1) каждый левый конечно порожденный подмодуль конечно представимого R-модуля конечно представим; 2) прямое произведение левых плоских R-модулей - левый плоский Д-модуль. Многие конструкции, известные для модулей над нётеровыми кольцами, оказались осуществимыми и для модулей над К. к. Напр., всякий конечно порожденный модуль над К. к. обладает проективной резольвентой из конечно порожденных модулей. В то же время класс К. к. шире класса нётеровых колец, так как включает в себя, напр., все регулярные кольца (в смысле Неймана) и кольца многочленов над нётеровыми кольцами от любого (конечного или бесконечного) числа переменных. Лит.:[1] Бурбаки Н., Коммутативная алгебра, пер. с франц., М., 1971. В. Е. Говоров. |
|
|