Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

КЛЕБША УСЛОВИЕ

Значение КЛЕБША УСЛОВИЕ в математической энциклопедии:

- необходимое условие оптимально'сти в задаче вариационного исчисления на условный экстремум; установлено Р. Клебшем [1]. Если экстремаль x(t), x:. доставляет условный минимум функционалу в Болъца задаче:

то согласно правилу множителей она является безусловной экстремалью функционала

где а - Лагранжа множители, определяемые вместе с x(t)из необходимых урловий экстремума функционала (1). Одним из таких необходимых условий является К. у.

Для того, чтобы экстремаль x(t)доставляла минимум в рассматриваемой задаче, необходимо выполнение К. у., требующего, чтобы для любой ненулевой совокупности чисел xi, i=1,..., п, удовлетворяющей уравнениям

имела место неотрицательность квадратичной формы

Необходимое К. у. непосредственно связано с более сильным необходимым Вейерштрасса условием и может быть получено из последнего как следствие.

В задачах вариационного исчисления на безусловный экстремум, в частности в простейшей задаче вариационного исчисления, аналогом К. у. является Лежандра условие.

В задачах оптимального управления К. у. эквивалентно неположительности второго дифференциала Гамильтона функции, что является необходимым условием выполнения Понтрягина принципа максимума при изменении оптимального управления в открытой области.

Лит.:[1] Сlеbsсh R. F. A., "J. fur Math.", 1858, Bd 55, S. 254; [2] Блисс Г. А., Лекции по вариационному исчислению, пер. с англ., М., 1950.

И. <Б. <Вапнярский.