Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

КЛАССИЧЕСКИ ПОЛУПРОСТОЕ КОЛЬЦО

Значение КЛАССИЧЕСКИ ПОЛУПРОСТОЕ КОЛЬЦО в математической энциклопедии:

- ассоциативное артиново справа (или, что равносильно, артиново слева) кольцо с нулевым Джекобсона радикалом. Строение К. п. к. описывает Веддерберна- Артина теорема. Класс К. п. к. может быть охарактеризован и гомологическими свойствами (см. Гомологическая классификация колец). К. п. к. является каждая групповая алгебра конечной группы над полем, характеристика к-рого взаимно проста с порядком этой группы. Коммутативные К. п. к. суть конечные прямые суммы полей. С К. п. к. связана теорема Голди, утверждающая, что кольцо обладает левым классическим кольцом частных, являющимся К. п. к., тогда и только тогда, когда оно удовлетворяет условию максимальности для левых аннуляторов и не содержит прямых сумм левых Идеалов. Л. А Скорняков.