"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
КЛАССИЧЕСКИ ПОЛУПРОСТОЕ КОЛЬЦОЗначение КЛАССИЧЕСКИ ПОЛУПРОСТОЕ КОЛЬЦО в математической энциклопедии: - ассоциативное артиново справа (или, что равносильно, артиново слева) кольцо с нулевым Джекобсона радикалом. Строение К. п. к. описывает Веддерберна- Артина теорема. Класс К. п. к. может быть охарактеризован и гомологическими свойствами (см. Гомологическая классификация колец). К. п. к. является каждая групповая алгебра конечной группы над полем, характеристика к-рого взаимно проста с порядком этой группы. Коммутативные К. п. к. суть конечные прямые суммы полей. С К. п. к. связана теорема Голди, утверждающая, что кольцо обладает левым классическим кольцом частных, являющимся К. п. к., тогда и только тогда, когда оно удовлетворяет условию максимальности для левых аннуляторов и не содержит прямых сумм левых Идеалов. Л. А Скорняков. |
|
|