Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ИСЧЕРПАНИЕ ОБЛАСТИ

Значение ИСЧЕРПАНИЕ ОБЛАСТИ в математической энциклопедии:

аппроксимирующая последовательность областей,- для данной области Dтопологического пространства Xпоследовательность в определенном смысле регулярных областей такая, что и Для любой области Dкомплексного пространства С n существует, напр., И. о., состоящее из областей Dk, ограниченных кусочно гладкими кривыми в С 1 или кусочно гладкими поверхностями в С n, n>1. Для любой открытой римановой поверхности Sсуществует полиэдрическое исчерпание состоящее из полиэдрических областей П k, представляющих собой, каждая в отдельности, связное объединение конечного числа треугольников триангуляции S, причем: и границей каждой из областей, составляющих открытое множество при достаточно большом А: является лишь один из граничных контуров П k.

Лит.:[1] Стоилов С, Теория функций комплексного переменного, пер. с рум., т. 2, М., 1962, гл. 5 и сл.

Е. Д. СоАоменцев.