"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
АНАЛИТИЧЕСКАЯ КРИВАЯЗначение АНАЛИТИЧЕСКАЯ КРИВАЯ в математической энциклопедии: аналитическая дуга,- кривая K n-мерного евклидова пространства допускающая аналитич. араметризацию. Это означает, что координаты ее точек могут быть выражены в виде аналитич. функций действительного параметра т. е. в нек-рой окрестности каждой точки t0, функции представимы в виде сумм сходящихся степенных рядов по степеням причем производные не равны нулю одновременно ни в одной точке отрезка . Последнее условие иногда оговаривают дополнительно, называя удовлетворяющую ему А. к. правильной. А. к. наз. замкнутой, если На плоскости комплексного переменного = А. к. допускает представление в виде комплексной аналитич. функции действительного параметра Если А. к. расположена в области то при конформном отображении на к.-л. область она отображается также в А. к. Если множество точек пересечения двух А. к. бесконечно, то эти А. к. совпадают. Вообще, в комплексном пространстве комплексные координаты точек А. к. допускают представление в виде аналитич. функций действительного параметра Следует, однако, иметь в виду, что при термин "А. к." иногда обозначает аналитическую поверхность комплексной размерности единица. На рцмановой поверхности SА. к. Кдопускает представление вида - локальный униформизирующий параметр точек Рповерхности S, -аналитич. функция действительного параметра в окрестности любой точки Лит.:[1] Маркушевич А. И., Теория аналитических функций, т. 2, М., 1968; гл. 8; [2] Шабат Б. В., Введение в комплексный анализ, ч. 1-2, 2изд., М., 1976. Е. Д. Соломенцев. |
|
|