"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ИЗМЕРИМОЕ ОТОБРАЖЕНИЕЗначение ИЗМЕРИМОЕ ОТОБРАЖЕНИЕ в математической энциклопедии: - отображение f измеримого пространства в измеримое пространство такое, что В случае, когда есть а-алгебра, а - действительная прямая с s-алгеброй А 2 борелевских множеств, понятие И. о. сводится к понятию измеримой функции (однако, когда есть лишь s-кольцо, определение измеримой функции обычно видоизменяется в связи с нуждами теории интегрирования). Суперпозиция И. о. измерима. Если - кольца, и для любого Виз нек-рого класса множеств такого, что кольцо, им порожденное, совпадает с то f измеримо. Аналогичное утверждение верно и для случая s-колец, алгебр и s-алгебр. Если - топологич. пространства са-алгебрами борелевских множеств, то всякое непрерывное отображение Х 1 в Х 2 измеримо. Пусть X - топологич. пространство, есть а-алгебра его борелевских подмножеств и m -конечная неотрицательная регулярная мера на (регулярность означает, что m(A)=sup {m(F) : Fзамкнуто}). Пусть, далее, S- сепарабельное метрич. пространство,есть а-алгебра его борелевских подмножеств и f- измеримое отображение и Тогда для любого e>0 найдется замкнутое подмножество такое, что и f непрерывно sa F (теорема Лузина). Лит..: [1] Xалмош П., Теория меры, пер. с англ., М.,. 1953; [2] Невё Ж., Математические основы теории вероятностей, пер. с франц., М., 1969; [3] Бурбаки Н., Интегрирование. Меры, интегрирование мер, пер. с франц., М., 1967; [4] Данфорд Н., Шварц Дж., Линейные операторы. Общая теория, пер. с англ., М., 1962. В. В. Сазонов. |
|
|