Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ЗНАКОПЕРЕМЕННАЯ ГРУППА

Значение ЗНАКОПЕРЕМЕННАЯ ГРУППА в математической энциклопедии:

п-й степени - подгруппа А n симметрической группы S п, состоящая из всех четных подстановок. А п является инвариантной подгруппой индекса 2 и порядка n!/2 группы Sn. Подстановки из А п, рассматриваемые как подстановки индексов переменных х 1,..., х п, не изменяют значения так наз. знакопеременного многочлена П( х i-xj), откуда и происходит назв. "3. г.". Группа А т может быть определена и для бесконечной мощности т, как подгруппа симметрич. группы Sm бесконечной мощности т, состоящая из всех четных подстановок. При n>3 группа Sn будет (п-2)-кратно транзитивной. При любом п, конечном или бесконечном, исключая n=4, эта группа проста, что играет важную роль в теории разрешимости алгебраич. уравнений в радикалах.

Лит.:[1] Xолл М., Теория групп, пер. с англ., М., 1962.

Н. Н. Вилъямс.