"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЗАРИСКОГО КАСАТЕЛЬНОЕ ПРОСТРАНСТВОЗначение ЗАРИСКОГО КАСАТЕЛЬНОЕ ПРОСТРАНСТВО в математической энциклопедии: к алгебраическому многообразию или схеме Xв точке х- векторное пространство над полем вычетов (х)точки х, двойственное к пространству где - максимальный идеал локального кольца О X, x точки хна X. Если и задается системой уравнений где то 3. к. п. в рациональной точке х=( х 1,..., х п )задается системой линейных уравнений Многообразие Xнеособо в рациональной точке хтогда и только тогда, когда размерность 3. к. п. к Xв хравна размерности X. Для рациональной точки 3. к. п. двойственно к пространству - слою в точке хкокасательного пучка W1X/k. Неприводимое многообразие Xнад совершенным полем кгладко тогда и только тогда, когда пучок W1X/k локально свободен. Векторное расслоение ассоциированное с пучком наз. касательным расслоением Xнад k;оно функториально связано с X. Его пучок сечений называется касательным пучком к X.3. к. п. рассмотрено О. Зари1ким [1]. Лит.:[1] Zariski О., "Trans. Amfcr. Math. Soc", 1947, v. 62, p. 1 - 52; MSamuel P., Methodes d'algebre abstraite en geometrie algebrique, 2 ed., В.- Hdlb.- N.Y., 1967; [3] Шафаревич И. Р., Основы алгебраической геометрии, М., 1972, с. 1*07. В. И. Данилов. |
|
|