"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЕГОРОВА СИСТЕМАЗначение ЕГОРОВА СИСТЕМА в математической энциклопедии: поверхностей - триортогональная система е, состоящая из потенциальных поверхностей; названа по имени Д. Ф. Егорова, подробно рассмотревшего (под названием потенциальных систем) в 1901 (см. [1]) общую теорию и многочисленные примеры систем указанного вида. Е. с. 2 может быть определена как система, допускающая (однопараметрическую) группу преобразований, переводящих 2 саму в себя таким образом, что нормали в соответственных точках 2 остаются параллельными. Механическим истолкованием этой группы служит переносящее поверхности Е. с. стационарное течение жидкости, имеющее потенциал скоростей. Пусть - уравнения поверхностей, образующих Е. с. 2, Я/ - коэффициенты Ламе, фигурирующие в выражении квадрата линейного элемента пространства в криволинейных координатах {и i}: Р i- расстояние начала координат от трех касательных плоскостей е, Rik -главные радиусы кривизны поверхности и'= const, соответствующие элементу дуги Hkduk,bik=-Hk/Rik- величины, через к-рые выражаются линейные элементы dsi сферич. изображений поверхностей: Функции Pi и Hi удовлетворяют одной и той же системе уравнений: Решения этих уравнений определяют еще две Е. с. е 1 и е -1 того же сферич. изображения, для к-рых Продолжение этого преобразования в ту и другую стороны дает ряд Е. с. (ряд Егорова) одного сферич. изображения, из к-рых каждая следующая е k+1 получается из предыдущей е k с помощью формул: И вообще, изыскание сферич. изображения Е. с. е приводится к изысканию потенциальной системы на сфере: любую такую систему можно принять за сферич. изображение одного из трех семейств, составляющих 2. Е. с. е характеризуется тем, что где w - некоторая функция, имеющая смысл потенциала скоростей соответствующего течения, т. е. ui=const - потенциальные поверхности. При этом, для любой потенциальной поверхности Sопределяется Е. с. 2, в состав к-рой входит S. Касательная к линии пересечения какой-либо поверхности w=const с поверхностью ui=const в любой точке параллельна лучу li, соединяющему центры геодезич. кривизн линий кривизны поверхности ui=const; во всякой точке пространства три луча l1; l2, l3 параллельны одной и той жеплоскости - касательной плоскости поверхности w= const, а соприкасающиеся плоскости координатных линий проходят через одну прямую. Величины bik и Rik для Е. с. удовлетворяют соотношениям: (симметричность bik также необходима и достаточна для того, чтобы триортогональная система была Е. с). Лит.:[1] Егоров Д. Ф., Работы по дифференциальной геометрии, М., 1970. М. И. Войцехоеский. |
|
|