Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ДИФФУЗИОННЫЕ МЕТОДЫ

Значение ДИФФУЗИОННЫЕ МЕТОДЫ в математической энциклопедии:

- методы решения кинетич. уравнения переноса нейтронов (или других частиц), модифицирующие уравнения диффузионного приближения. Поскольку диффузионное приближение дает правильную форму асимптотич. решения уравнения переноса (вдали от источников и границ раздела сред с различными свойствами), то его усовершенствования заключаются в правильном выборе констант (напр., коэффициента диффузии) и разумной постановке граничных условий с вакуумом и между областями с различными физич. характеристиками.

Усовершенствованный Д. м. использует в односкоростной задаче трансцендентное уравнение для бесконечной среды,

чтобы определить коэффициент диффузии

где р- отношение сечения рассеяния к полному сечению, к- корень характеристического уравнения. На границах сред в экстраполированных точках ставятся граничные условия, полученные из точного решения задачи для двух сред с постоянным полным сечением (равенство логарифмич. производных и скачок асимптотич. плотности).

Другой путь улучшения диффузионного приближения - использование Р 2 -приближения метода сферич. гармоник (см. Сферических гармоник метод). Обычное диффузионное приближение исходит из P1 -приближения метода сферич. гармоник. Переход к Р 2 -приближению приводит к уравнению диффузии с исправленными параметрами и улучшенными граничными условиями, причем плотность нейтронов на границе терпит разрыв.

Кроме того, возможно применение решения уравнения диффузии для ускорения сходимости последовательных приближений кинетич. уравнения переноса с использованием в следующей итерации приближенного решения кинетич. уравнения для вычисления поправок к коэффициенту диффузии.

Возможно также, в рамках одной задачи, такое сопряжение диффузионного решения с точным решением, при к-ром диффузионное приближение используется вдали от областей, занятых поглотителями, источниками и т. п., а в этих областях решается точное уравнение переноса.

Лит.:[1] Романов Ю. А., в кн.: Исследования критических параметров реакторных систем, М., 1960, с. 3-26; [2] Теория и методы расчета ядерных реакторов, М., 1962; [3] Вычислительные методы в теории переноса, М., 1969.

В. А. Чуянов.