Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ДЕЛЬТА-ФУНКЦИИ МЕТОД

Значение ДЕЛЬТА-ФУНКЦИИ МЕТОД в математической энциклопедии:

- метод нахождения Грина функции линейных дифференциальных уравнений математич. физики (т. е. метод определения функции влияния точечного источника) с помощью дельта-функции d(х). Функция Грина G(x, x' )линейного дифференциального оператора L(x). определяется из уравнения как G(x, х')=-L-1 (х)d(х- х'), т. е. выражает влияние точечного источника, расположенного в точке х' на значение возмущения в точке х. Наиболее просто вид обратного оператора L-1 (х)определяется в часто встречающемся случае, когда L (х)является дифференциальным оператором с постоянными (не зависящими от х)коэффициентами. Решение неоднородного линейного дифференциального уравнения общего вида для возмущения j(х). с источником р(х):

с помощью функции Грина G(x, x' )записывается в виде свертки:

где интегрирование производится по всей области, в к-рой действует источник р(х).

Лит.:[1] ИваненкоД., Соколов А., Классическая теория поля, М.-Л., 1951.

В. Д. Кукин.