"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ДЕЛЬТА-ФУНКЦИИ МЕТОДЗначение ДЕЛЬТА-ФУНКЦИИ МЕТОД в математической энциклопедии: - метод нахождения Грина функции линейных дифференциальных уравнений математич. физики (т. е. метод определения функции влияния точечного источника) с помощью дельта-функции d(х). Функция Грина G(x, x' )линейного дифференциального оператора L(x). определяется из уравнения как G(x, х')=-L-1 (х)d(х- х'), т. е. выражает влияние точечного источника, расположенного в точке х' на значение возмущения в точке х. Наиболее просто вид обратного оператора L-1 (х)определяется в часто встречающемся случае, когда L (х)является дифференциальным оператором с постоянными (не зависящими от х)коэффициентами. Решение неоднородного линейного дифференциального уравнения общего вида для возмущения j(х). с источником р(х): с помощью функции Грина G(x, x' )записывается в виде свертки: где интегрирование производится по всей области, в к-рой действует источник р(х). Лит.:[1] ИваненкоД., Соколов А., Классическая теория поля, М.-Л., 1951. В. Д. Кукин. |
|
|