Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ДВОЙНОЙ ПРЕДЕЛ

Значение ДВОЙНОЙ ПРЕДЕЛ в математической энциклопедии:

- 1) Д. п. последовательности, предел двойной последовательности тп}, т, n=1, 2, ...,- число а, определяемое следующим образом: для любого е>0 существует такое Ne, что для всех m>Ne и n>Ne выполняется неравенство

Обозначение:

Если для любого e>0 существует такое Ne, что для всех m>Ne и n>Ne выполняется неравенство |xmn|>e, то последовательность х тп имеет своим пределом бесконечность:

Аналогично определяются бесконечные пределы

Д. п. последовательности является частным случаем Д. п. функции по множеству, а именно в случае, когда это множество состоит из точек плоскости с целочисленными координатами ти п. Поэтому между Д. п. последовательности и ее повторными пределами существует та же связь, что и в общем случае.

2) Д. п. функции - предел функции двух переменных, определяемый следующим образом. Пусть функция f(x, у )определена на множестве Е, расположенном в плоскости XOY, а ( х 0, у 0)- его предельная точка. Число Аназ. Д. п. функции f(x, у )в точке ( х 0, у 0), или при если для любого e>0 существует такое d>0, что для всех точек координаты к-рых удовлетворяют неравенствам

выполняется неравенство

В этом случае пишут

Используя понятие предела последовательности, определение Д. п. функции можно сформулировать следующим образом:

если для любой последовательности

выполняется условие

Аналогично формулируются определения Д. п. функции при стремлении аргумента к бесконечности, а также определения бесконечных Д. п. функции.

Существует связь между Д. п. функции и повторным пределом функции в точке (x0, y0) или в : пусть х 0 и у 0- предельные точки (конечные или бесконечные) для числовых множеств Xи У,Если суще-

ствует конечный или бесконечный Д. п. функции

и при любом существует конечный предел

то существует и повторный предел

и он равен Д. п. функции.

Используя понятие окрестности, определению Д. п. функции можно придать следующий вид: пусть а- предельная точка ( х 0, у 0 )множества Еили символ , причем в последнем случае множество Енеограничено, А- число или один из символов тогда

если для любой окрестности О A точки или символа Асуществует такая окрестность О а числа или символа а, что для всех выполняется условие В этом виде определение Д. п. функции переносится на случай, когда функция f определена на произведении топологич. пространств Xи Y, а значения f(x, у )также принадлежат некоторому топологическиму пространству. Л. Д. Кудрявцев.