Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

p-ГРУППА

Значение p-ГРУППА в математической энциклопедии:

- группа, каждый неединичный элемент к-рой есть р- элемент, т. <е. элемент, удовлетворяющий уравнению ; здесь р - фиксированное одно и то же для всех элементов группы простое число, а п - натуральное число, вообще говоря, свое для каждого элемента группы. В том же смысле вместо буквы рупотребляют другие буквы, напр. но в таком случае их употребление особо оговаривают. Если р - конкретное простое число, напр. 2, 3, 5, ..., то говорят о 2-группах, 3-группах и т. д. Иногда р- Г. <наз. примерными группами. Обобщением р-Г. является -группа ( - заданное множество простых чисел), определяемая как группа, каждый неединичный элемент к-рой есть p-элемент, т. е. элемент, удовлетворяющий условию , где - натуральное число, все простые делители к-рого принадлежат Реже в том же смысле пишут П-групна, -группа, t-группа. Если N - множество всех простых чисел, то часто обозначают и говорят о и -группах, о - и -элементах. Подгруппа данной группы, являющаяся р-Г. (p-группой), наз. р-подгруппой (p-подгруппой).

Значительная часть работ в теории конечных групп связана с задачей описания произвольных конечных групп через конечные р-Г. и простых конечных групп через 2-группы (см. [1], гл. IV и VI и [2]). Поэтому наиболее интенсивно развиваются направления, связанные с описанием конечных р-Г. по их абелевым подгруппам, либо с их описанием посредством р-автоморфизмов.

Бесконечные (неабелевы) р-Г. менее изучены. Ниже приводится небольшое число наиболее важных результатов, грубо разделенных на три части.

1) О результатах, относящихся к решению проблем Бернсайда, см. Бернсайда проблема.

2) Локально конечная р-Г. непроста (см. [3], с. 290).

3) Примеры, показывающие отличие теории конечных р-Г. от общей теории р-Г. а) Существует локально конечная р-Г., к-рая не имеет неединичных абелевых нормальных подгрупп (см. [3], с. 294). б) Существует локально конечная р-Г., совпадающая со своим коммутантом (см. [3], с. 296).

См. также Группа с условием конечности.

Лит.:[1] Huppert В., Endliche Gruppen, В., 1967; [2] Gorenstein D., Finite Groups, N. Y., 1968; [3] Шмидт О. Ю., Избр. тр. Математика, М., 1959; [4] Черников С. Н., "Успехи матем. наук", 1959, т. 14, в. 5, с. 45-96; [5] Итоги науки. Алгебра. 1964, М., 1966, с. 123-60; [6] Серр Ж.-П., Когомологии Галуа, пер. сфранц., М., 1968.

Ю. М. Горчаков.