Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ГРУПП КАТЕГОРИЯ

Значение ГРУПП КАТЕГОРИЯ в математической энциклопедии:

- категория Gr, объектами к-рой являются всевозможные группы, а морфизмами - все гомоморфизмы групп. Иногда предполагают, что все рассматриваемые группы принадлежат фиксированному универсальному множеству. Г. к. является локально малой биполной категорией с нулевыми морфизмами. Она обладает единственной структурой бикатегории, в к-рой допустимыми эпиморфизмами являются нормальные эпиморфизмы и допустимыми мономорфизмами - все мономорфизмы. Причем нормальные эпиморфизмы - это в точности сюръективные гомоморфизмы, а мономорфизмы - в точности инъективные гомоморфизмы. Проективными объектами Г. к. являются свободные группы и только они, инъективными объектами - только единичные группы, к-рые будут одновременно и нулевыми объектами. Аксиоматич. описание Г. к. дано П. Леру [3].

Г. к. является частным случаем общего определения Г. к. над произвольной категорией К. Категория состоит из всех групповых объектов из Кн гомоморфизмов между ними; эта категория наследует ряд свойств категории К, она, в частности, полна, если полна категория К.

Лит.:[1] Курош А. Г., Лившиц А. X., Шульгейфер Е. Г., "Успехи матем. наук", 1960, т. 15, в. 6, с. 3-52; [2] Eckmann В., Hilton P. J., "Math. Ann.", 1962, Bd 145, №3, S. 227-55; 1963, Bd 151, №2, S. 150-86; 1963. Bd 150, № 2, S. 165-87: [3] Lerоux P., "Canad. Math. Bull.", 1972, v. 15, № 3, p. 375-80.

М . Ш. Цаленко.