"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ГРАФА УКЛАДКАЗначение ГРАФА УКЛАДКА в математической энциклопедии: графа вложение,- отображение вершин и ребер графа соответственно в точки и непрерывные кривые нек-рого пространства такое, что вершины, инцидентные ребру, отображаются в концы кривой, соответствующей этому ребру. Правильной укладкой наз. укладка, при к-рой разным вершинам соответствуют различные точки, а кривые, соответствующие ребрам (исключая их концевые точки), не проходят через точки, соответствующие вершинам, и не пересекаются. Любой граф допускает правильную укладку в трехмерное пространство. Граф, допускающий правильную укладку на плоскости, наз. плоским. Существуют неплоские графы, напр, графы и (см. Граф плоский, рис. 1). Наименьший род двумерной ориентируемой поверхности, на к-рой граф Gдопускает правильную укладку, наз. родом графа G. Установлено, в частности, что где - полный граф с вершинами, - наименьшее целое число, не меньшее ; где - полный граф двудольный; где есть n-мерный куб. Толщиной графа G наз. наименьшее число его плоских подграфов, объединение к-рых дает граф G. Установлено, в частности, что (возможно с несколькими исключениями). Изучаются также другие числовые характеристики, связанные с Г. у., напр, число скрещиваний - наименьшее число пересечений ребер, с к-рым можно уложить данный граф на данной поверхности; крупность - наибольшее число непересекающихся по ребрам неплоских подграфов в данном графе и др. Рассматриваются также укладки на неориентируемых поверхностях. Вложение графа в n-мерную целочисленную решетку - это отображение в данную решетку, при к-ром вершины отображаются в различные узлы решетки, а ребра идут по линиям решетки. Задачи об укладках графов на поверхностях и вложениях их в решетки возникают при автоматизированном проектировании ЭВМ, при проектировании коммуникаций ы т. д. Лит.: [1] Харари Ф., Теория графов, пер. с англ., М., 1973; [2] Теория графов. Покрытия, укладки, турниры, сб. переводов, М., 1974, с. 82 -159. В. Б. Алексеев. |
|
|