Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ГРАДИЕНТ

Значение ГРАДИЕНТ в математической энциклопедии:

- одно из основных понятий векторного анализа и теории нелинейных отображений.

Градиентом скалярной функции векторного аргумента из евклидова пространства Е n наз. производная функции f(t).по векторному аргументу t, то есть n-мерный вектор с компонентами , . Существуют следующие обозначения Г. функции f(t) в точке :


Г. представляет собой ковариантный вектор: компоненты Г., вычисленные в двух различных координатных системах и , связаны соотношениями:


Вектор , начало к-рого помещено в точку , указывает направление наискорейшего роста функции , ортогональное линии или поверхности уровня функции , проходящей через точку .

Производная функции в точке в направлении произвольного единичного вектора равна проекции Г. функции на это направление:


где - угол между и . Максимум производной достигается при , т. е. в направлении Г., и равен длине Г.

Понятие Г. тесно связано с понятием дифференциала функции. В случае дифференцируемости в точке вблизи


то есть . Существование в точке t0 Г. функции не достаточно для справедливости формулы (2).

Точка , в к-рой , наз. стационарной (критической или экстремальной) точкой функции . Такой точкой является, напр., точка локального экстремума функции и система используется для нахождения экстремальной точки t0.

При вычислении значения Г. справедливы формулы:


Г. есть производная в точке по объему векторной функции объема


где Е - область с границей - элемент площади , а - единичный вектор внешней нормали к . Другими словами


Формулы (1), (2) и перечисленные выше свойства Г. указывают на инвариантный относительно выбора системы координат характер понятия Г.

В криволинейной системе координат в к-рой квадрат длины элемента


компоненты Г. функции , отнесенного к ортам, касающимся координатных линий в точке х, равны


где матрица - обратная к матрице .

Понятие Г. для более общих векторных функций векторного аргумента вводится при помощи равенства (2), означающего, что Г. есть линейный оператор, действием к-рого на приращение аргумента получается главная линейная часть приращения вектор-функции . Напр., если есть m-мерная вектор-функция аргумента , то ее Г. в течке - Якобы матрица с компонентами

причем


где - m-мерный вектор, длина к-рого есть . Матрица определяется при помощи предельного перехода


с любым фиксированным n-мерным вектором .

В бесквнечномерном гильбертовом пространстве определение (3) равносильно определению дифференцируемости по Фреше и Г. при этом совпадает с производной Фреше.

В случае, когда f(t).лежит в бесконечномерном векторном пространстве, возможны различные типы предельного перехода в (3) (см., напр., Гато производная). В теории тензорных полей, заданных в области n-мерного аффинного пространства связности, при помощи Г. описывается главная линейная часть приращения компонент тензора при соответствующем связности параллельном перенесении. Г. тензорного поля


типа (p,q) есть тензор типа (p,q+1) с компонентами


где - оператор абсолютного (ковариантного) дифференцирования.

Понятие Г. широко применяется в различных задачах математики, механики и физики. Многие физич. поля могут быть рассматриваемы как градиентные поля (см. Потенциальное поле).

Лит.:[1] Кочин Н. Е., Векторное исчисление и начала тензорного исчисления, 9 изд., М., 1965: [2] Рашевский П. К., Риманова геометрия и тензорный анализ, 3 изд , М 1967. л. П. Купцов.