"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ГОМОЛОГИИ ДИНАМИЧЕСКОЙ СИСТЕМЫЗначение ГОМОЛОГИИ ДИНАМИЧЕСКОЙ СИСТЕМЫ в математической энциклопедии: когомологии динамической системы,- один из инвариантов в эргодической теории, построение к-рого напоминает построение когомологии группы (см. [1]). В простейшем случае одномерных (ко)гомологий каскада, получающегося итерированием автоморфизма Тпространства с мерой X, определение эквивалентно следующему. Пусть - группа по сложению всех измеримых функций на X(соответственно группа по умножению измеримых функций f, для к-рых почти всюду). Аддитивной (соответственно мультипликативной) (ко) границей функции наз. функция (соответственно ). Обозначая совокупность всех (ко)границ через , можно определить аддитивную (соответственно мультипликативную) группу (ко)гомологий как факторгруппу . Вместо всех измеримых функций могут рассматриваться и более узкие классы функций. Г. д. с. являются инвариантами траекторного изоморфизма (подробности для см. в [2]). Пока (к 1977) Г. д. с. не вычислены ни в одном нетривиальном примере. Использование "гомологических" понятий в эргодич. теории определяется тем, что в различных конкретных случаях бывает важно знать (и иногда действительно удается выяснить), является ли та или иная определенная функция кограницей. Лит.:[1] Кириллов А. А., "Успехи матем. наук", 1967, т. 22, № 5, с. 67-80; [2] Степин А. М., "Функциональн. анализ и его приложения", 1971, т. 5, .№ 2, с. 91-2. Д. В. Аносов. |
|
|