"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ГЛАДКИЙ МОРФИЗМЗначение ГЛАДКИЙ МОРФИЗМ в математической энциклопедии: схем- обобщение на случай схем понятия семейства неособых алгебраических многообразий. В классич. случае морфизма комплексных алгебраич. многообразий это понятие сводится к понятию регулярного отображения (субмерсии) комплексных многообразий. Конечно представленный (локально) морфизм схем наз. гладким морфизмом, если f есть плоский морфизм и если для любой точки слой будет гладкой схемой (над полем k(у)). Схема X наз. гладкой схемой над схемой Y, или гладкой Y-схемой, если структурный морфизм является Г. м. Примером гладкой Y-схемы служит аффинное пространство . Частный случай понятия Г. м. - этальный морфизм. Обратно, всякий Г. м. разлагается локально по X в композицию этального морфизма и проекции Композиция Г. м. снова есть Г. м.; аналогично обстоит дело с произвольной заменой базы. Г. м. характеризуется своим дифференциальным свойством: плоский конечно представленный морфизм будет Г. м. тогда и только тогда, когда пучок относительных дифференциалов есть локально свободный пучок ранга в точке х. Понятие Г. м. аналогично понятию расслоения в смысле Серра в топологии. Напр., Г. м. комплексных алгебраич. многообразий является локально тривиальным дифференцируемым расслоением. В общем случае выполняется следующий аналог аксиомы о накрывающей гомотопии: для любой аффинной схемы Y', ее замкнутой подсхемы определяемой нильпотентным идеалом, и любого морфизма канонич. отображение сюръективно. Если есть Г. м., а локальное кольцоJY,y точки является регулярным (соответственно нормальным, приведенным), то таким же будет и локальное кольцо JY,y любой точки Лит.:[1] Grоthеndiесk A., "Publ. math. IHES", 1967, t. 32; [2] Revetements etales et groupe fondamental, В., (971. В. И. <Данилов, И. В. Долгачев. |
|
|