"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ГЛАВНЫЙ РЯДЗначение ГЛАВНЫЙ РЯД в математической энциклопедии: длины т - такая конечная последовательность вложенных друг в друга нормальных подгрупп группы G, что ее нельзя включить (без повторения членов) ни в какую другую последовательность с теми же свойствами, т. е. - максимальная нормальная подгруппа группы G, содержащаяся в в качестве собственной подгруппы, . Группа тогда и только тогда обладает хотя бы одним Г. р., когда в ней обрываются все убывающие по включению и все возрастающие по включению последовательности нормальных подгрупп. Если группа обладает Г. р., то любые два таких ряда изоморфны, т. е. имеют одинаковую длину и между множеством факторов одного ряда и множеством факторов другого ряда существует взаимно однозначное соответствие, при к-ром соответственные факторы изоморфны. Ю. И. Мерзляков. |
|
|