"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИДЗначение ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИД в математической энциклопедии: незамкнутая нецентральная поверхность второго порядка. В надлежащей системе координат (см. рис.) уравнение Г. п. имеет вид: Сечения Г. п. плоскостями, параллельными плоскостям и , являются параболами, а сечения плоскостями, параллельными плоскости ,- гиперболами (плоскостью - двумя прямыми). Ось симметрии Т. п. наз. его осью; точка пересечения Г. п. с осью наз. вершиной Г. п. Если p = q, то Г. п. имеет две оси симметрии. Г. п.- линейчатая поверхность; уравнения прямолинейных образующих, проходящих через данную точку Г. п., имеют вид: А. Б. Иванов. |
|
|