"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ГЕНЗЕЛЕВО КОЛЬЦОЗначение ГЕНЗЕЛЕВО КОЛЬЦО в математической энциклопедии: - коммутативное локальное кольцо, для к-рого выполняется Гензеля лемма, или, в другом определении, для к-рого выполняется теорема о неявной функции. Для локального кольца А с максимальным идеалом последнее означает, что для любого унитарного многочлена и простого решения уравнения по модулю существует , и Примерами Г. к. являются полные локальные кольца, кольца сходящихся степенных рядов (и в более общем смысле, аналитические кольца), кольцо алгебраических степенных рядов (т. е. рядов из , алгебраических над ). Локальное кольцо, целое над Г. к., есть Г. к.; в частности, факторкольцо Г. к. есть Г. к. Для любого локального кольца Асуществует общая конструкция - такая локальная гензелева А-алгебра , что для любой локальной гензелевой А-алгебры Всуществует единственный гомоморфизм А-алгебр . Алгебра локального кольца Аявляется строго плоским А-модулем, будет максимальным идеалом алгебры , поля вычетов Аи канонически изоморфны, пополнения Аи (в топологиях локальных колец) совпадают. Так, гензелевой А-алгеброй для является кольцо алгебраических степенных рядов от Если А - нётерово (соответственно приведенное, нормальное, регулярное, превосходное) кольцо, то таким же будет и . Напротив, если А - целостное кольцо, то может не быть целостным; более точно, существует биективное соответствие между максимальными идеалами целого замыкания кольца Аи минимальными простыми идеалами . Г. к. с сепарабельно замкнутым полем вычетов наз. строго локальным (или строго гензелевым) по причине локальности его спектра в этальнои топологии схем; аналогично конструкции построения геизелевой А-алгебры имеется функтор строгой гензелевой А-алгебры . Понятие Г. к. можно вводить для полулокального кольца и даже в более общем смысле для пары кольцо - идеал. Г. к. можно характеризовать как кольцо, над которым любая конечная алгебра есть прямая сумма локальных колец. Г. к. введены в [1]; общая теория Г. к. и конструкция гензелевой А-алгебры разработаны в [2]. В теории этальных морфизмов и этальнои топологии гензелева А-алгебра понимается как индуктивный предел этальных расширений кольца. В коммутативной алгебре взятие гензелевой А-алгебры часто заменяет операцию пополнения, играющую важную роль при локальном исследовании объектов. Лит.:[1] Azumауa G., c.Nagoya Math. J.", 1951, v. 2, p. 119-50; [2] Nagata M., Local rings, N. Y.-L., 1962; [3] Grоthendiесk A., "Publ. math. IHES", 1967, № 32, ch. 4. В. <И. <Данилов. |
|
|